102 research outputs found

    AIS operation for effective bridge lookout

    Get PDF

    Oxygen Vacancy Induced Ferromagnetism in V2_2O5x_{5-x}

    Full text link
    {\it Ab initio} calculations within density functional theory with generalized gradient approximation have been performed to study the effects of oxygen vacancies on the electronic structure and magnetism in undoped V2_2O5x_{5-x} (0<x<0.50 < x < 0.5). It is found that the introduction of oxygen vacancies would induce ferromagnetism in V2_2O5x_{5-x} with the magnetization being proportional to the O vacancy concentration xx. The calculated electronic structure reveals that the valence electrons released by the introduction of oxygen vacancies would occupy mainly the neighboring V dxyd_{xy}-dominant band which then becomes spin-polarized due to intra-atomic exchange interaction, thereby giving rise to the half-metallic ferromagnetism.Comment: To be published as a Letter in J. Phys. Soc. Japa

    Steroids from the Soft Coral Sinularia crassa

    Get PDF
    One new sterol, crassarosterol A (1), and four new steroidal glycosides, crassarosterosides A–D (2–5) were isolated from the Formosan soft coral Sinularia crassa. The absolute configuration of 1 was determined using the Mosher’s method. The absolute configurations for the sugar moieties of 2–5 were determined by HPLC analysis on the o-tolylthiocarbamates derived from the liberated sugar after acid hydrolysis. Compounds 2 and 4 could significantly inhibit the expression of pro-inflammatory iNOS protein at 10 µM. In contrast, 1–3 were found to stimulate the expression of COX-2 protein at this concentration. Steroids 1 and 4 also showed cytotoxicity toward the selected human liver cancer cells

    Bioactive Cembranoids from the Soft Coral Sinularia crassa

    Get PDF
    Eight new cembranoids, crassarines A–H (1–8) were isolated from the Formosan soft coral Sinularia crassa. Compounds 1–3 represent the rare cembranoids with a 1,12-oxa-bridged tetrahydrofuran ring, while 4 and 5 are the firstly discovered 1,11-oxa-bridged tetrahydropyranocembranoids. The absolute configuration of 6 was determined using the Mosher’s method. Compounds 6 and 8 were found to significantly inhibit the expression of both pro-inflammatory iNOS and COX-2 proteins at 10 μM, respectively, while compounds 4–8 were found to be non-cytotoxic toward the selected human liver cancer cells

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Data from: DNA barcoding reveals cryptic diversity in the peanut worm Sipunculus nudus

    No full text
    Peanut worm (Sipunculus nudus) is a cosmopolitan species mainly distributed in tropical and subtropical coastal waters. Analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene sequences among S. nudus from GenBank revealed high genetic variation (p-distance, 0.115–0.235; k2p, 0.128–0.297) and paraphyletic relationships. These indicated misidentification and/or cryptic diversity may be present in the genus Sipunculus. To understand the genetic diversity and to manage the recourse of S. nudus, we collected specimens from coastal waters of southern China and Taiwan. In the phylogenetic topology, specimens can be separated into four distinct clades; three of these clades (clade A, B and C) were only represented from this region (southern China and Taiwan), but the clade D grouped with individuals from Central America (Atlantic coast). Furthermore, individuals of clades A and D were collected at the same location, which does not support the hypothesis that this genetic break reflects contemporary geographical isolation. The four distinct clades observed among coastal waters of southern China and Taiwan indicated underestimated diversity. It is noteworthy that the cryptic diversity is vulnerable under high pressure of human activity
    corecore